Non-Deterministic Communication Complexity of Regular Languages

نویسنده

  • Anil Ada
چکیده

The notion of communication complexity was introduced by Yao in his seminal paper [Yao79]. In [BFS86], Babai Frankl and Simon developed a rich structure of communication complexity classes to understand the relationships between various models of communication complexity. This made it apparent that communication complexity was a self-contained mini-world within complexity theory. In this thesis, we study the place of regular languages within this mini-world. In particular, we are interested in the nondeterministic communication complexity of regular languages. We show that a regular language has either O(1) or Ω(log n) non-deterministic complexity. We obtain several linear lower bound results which cover a wide range of regular languages having linear non-deterministic complexity. These lower bound results also imply a result in semigroup theory: we obtain sufficient conditions for not being in the positive variety Pol(Com). To obtain our results, we use algebraic techniques. In the study of regular languages, the algebraic point of view pioneered by Eilenberg ([Eil74]) has led to many interesting results. Viewing a semigroup as a computational device that recognizes languages has proven to be prolific from both semigroup theory and formal languages perspectives. In this thesis, we provide further instances of such mutualism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Non-deterministic Communication Complexity of Regular Languages

In this paper we study the non-deterministic communication complexity of regular languages. We show that a regular language has either constant or at least logarithmic non-deterministic communication complexity. We prove several linear lower bounds which we know cover a wide range of regular languages with linear complexity. Furthermore we find evidence that previous techniques (Tesson and Thér...

متن کامل

Deterministic Fuzzy Automaton on Subclasses of Fuzzy Regular ω-Languages

In formal language theory, we are mainly interested in the natural language computational aspects of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, we introduce two subclasses of fuzzy regular ω-languages called fuzzy n-local ω-languages and Buchi fuzzy n-local ω-languages, and give some closure properties for those subclasses. We define a ...

متن کامل

Communication Complexity and Regular Expression Size

We consider the problem of converting a deterministic finite automaton (DFA) into a short regular expression (RE). Examples given by Ehrenfeucht and Zeiger in the 1970s show that the required expression size in the worst case is 2Θ(n) for infinite languages, and for finite languages in nΩ(log log n) and nO(logn), if the alphabet size is allowed to grow with the number of states n of the given a...

متن کامل

Optimal Lower Bounds on Regular Expression Size Using Communication Complexity

The problem of converting deterministic finite automata into (short) regular expressions is considered. It is known that the required expression size is 2 in the worst case for infinite languages, and for finite languages it is n log n) and n, if the alphabet size grows with the number of states n of the given automaton. A new lower bound method based on communication complexity for regular exp...

متن کامل

Testing the Equivalence of Regular Languages 1

The minimal deterministic finite automaton is generally used to determine regular languages equality. Using Brzozowski’s notion of derivative, Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0801.4777  شماره 

صفحات  -

تاریخ انتشار 2008